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Selçuk University, Electrical & Electronics Engineering Department, 42075 Konya, Turkey

r t i c l e i n f o

rticle history:
eceived 9 July 2010
eceived in revised form 2 October 2010
ccepted 4 October 2010

eywords:
elestite
trontium carbonate

a b s t r a c t

A neural model for computing the conversion kinetics of SrSO4 to SrCO3 was investigated in sodium
carbonate solution, based on the multilayered perceptrons was presented. For this purpose the arti-
ficial neural network (ANN) method was used. The effects of stirring speed, temperature, mole ratio
Na2CO3:SrSO4 and particle size of the celestite on leaching kinetics were studied. The surface transfor-
mation of celestite to strontium carbonate in aqueous carbonate solutions was also supported by FT-IR
spectroscopy. The conversion rate of celestite increases systematically with increasing temperature (up
to 70 ◦C). Furthermore, the feasibility of replacing the SO4

2− ions with CO3
2− ions in the structure of

2−

rtificial neural network (ANN)
xtended delta-bar-delta (EDBD)

the leached solid was also investigated by FT-IR. FT-IR results showed that the replacement of SO4

ions in celestite by CO3
2− ions in leaching conditions was nearly completed at 60 ◦C with a mole ratio

Na2CO3:SrSO4 = 4:1, solid to liquid = 5:500, −212+106 �m particle size, and 400 rpm stirring rate for an
interval of 240 min. The first (up to 90 min) conversion result obtained was trained with an extended
delta-bar-delta algorithm (EDBD), which is in the multilayered perceptrons and is a neural model struc-
ture. Results of other conversion times (90–240 min) results were predicted. Results predicted by the

y goo
neural model were in ver

. Introduction

Strontium sulfate occurs in nature as mineral celestite (SrSO4),
he principal ore of strontium. Strontium carbonate also occurs in
ature as strontianite and can be mined from its deposit. It is, how-
ver, usually made from the mineral celestite. Celestite is converted
o SrCO3, the common commercial form of strontium. Production

ethods for conversion of celestite to SrCO3 have been investigated
sing the black ash method (alternatively known as the calcining
ethod) and the soda method (also known as direct conversion).

n the black ash method, the celestite concentrate is calcined at the
igh temperature (generally over than 1000 ◦C), follows a leaching
rocess of the resulting strontium sulfide with hot water, filtration
o separate solid impurities and precipitation with sodium carbon-
te and/or carbon dioxide to produce the strontium carbonate [1,2].
n the direct conversion method, high-grade celestite ore is reacted

ith a solution containing a carbonate source that may be sodium

arbonate and ammonium carbonate or ammonium bicarbonate to
btain directly low-grade strontium carbonate and sodium sulfate
y-product [3–5]. It is reported that the black ash method produces
hemical grade strontium carbonates that are 98% strontium car-

∗ Corresponding author. Tel.: +90 2623032030; fax: +90 2623032003.
E-mail address: denizbingol1@gmail.com (D. Bingol).

385-8947/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2010.10.007
d agreement with the experimental results.
© 2010 Elsevier B.V. All rights reserved.

bonate and 2% byproducts and impurities. The soda ash method
produces technical grade strontium carbonates, containing at least
97% strontium carbonate [6].

Strontium carbonate (SrCO3) is not only the basic raw mate-
rial for producing other strontium salts, but also an the important
raw material for producing magnetic materials such as optic glass,
cathode-ray tubes for color TVs, electromagnets and strontium fer-
rite. Moreover, it is used in medicine, chemical reagents, pigments,
coating, ceramics, electrolytic zinc, sugar refining, and brilliant reds
in fireworks and signal flares. Rapid development of the technol-
ogy will continue to increase demand for strontium carbonate.
Erdemoglu et al. [7] reported that investigations of conversion
of celestite to strontium carbonate will continue because of high
energy consumption in the black ash process during high temper-
ature leaching and acid costs in the direct conversion process.

Celestite reacts with sodium carbonate, giving solid strontium
carbonate and soluble sodium sulfate, according to

SrSO4(s) + Na2CO3(aq) = SrCO3(s) + Na2SO4(aq) (1)

The reaction of ion replacement in mineral species has been

the subject of many studies: Booth and Pollard [8] indicated that
celestite was converted to pure strontium carbonate by dissolv-
ing in fused sodium chloride (not reacting with the ore) and
adding sodium carbonate within less than 30 min at 840 ◦C with
maximum conversion. Iwai and Toguri [3] proposed two reac-

dx.doi.org/10.1016/j.cej.2010.10.007
http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:denizbingol1@gmail.com
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Table 1
Chemical analysis of the various size fractions of the celestite sample (wt.%).

Mineral Particle size (�m)

+212 −212+106 −106+75 −75+53 −53

SrSO 94.38 95.69 96.67 97.32 97.24
18 D. Bingol et al. / Chemical Engi

ion mechanisms for the leaching process from thermodynamic
nd kinetic points of view: an initial reaction, when a dense layer
f SrCO3 forms on the celestite surface, and a second reaction,
hen diffusion of the SO4

2− ions through the SrCO3 layer is rate
etermining. Castillejos et al. [4] reported that the leaching reac-
ion of celestite with Na2CO3 solutions is topochemical, making
t suitable for a shrinking core model that incorporates diffusion
f CO3

2− through the solution in the pores of the product layer
s the rate-limiting step. Suárez-Orduña et al. [9] investigated
tructural characterization of converted strontianite (SrCO3) crys-
als from SrSO4 (celestite) under alkaline hydrothermal conditions
y XRD, FT-IR, and SEM. Conversion of mineral SrSO4 to SrCO3
ccurred by a typical dissolution-precipitation mechanism. Suárez-
rduña et al. [10] investigated the kinetics of the conversion of
ineral celestite to strontianite under alkaline hydrothermal con-

itions and reported that the reaction rate was determined by the
iffusion of sulfate ions through the porous layer of strontium car-
onate formed on the celestite surface. Furthermore, details of the
ffect of the crystallographic structural changes associated with the
eplacement of SO4

2− ions by monovalent (F− and OH−) ions in
ineral SrSO4 crystals [11] and chemical reactivity of the mineral

elestite [12] in hydrothermal conditions have also been discussed.
he pseudomorphic replacement of mineral barite (BaSO4) crys-
als converted to barium carbonate under alkaline hydrothermal
onditions was investigated because of the chemical and struc-
ural similarities of the mineral barite specie to celestite (SrSO4)
oted by Rendon-Angeles et al. [13]. Aydogan et al. [14] investi-
ated dissolution kinetics of celestite (SrSO4) in HCl solution with
aCl2 to produce SrCl2 in solution and showed that the disso-

ution of celestite is a process controlled by chemical reactions.
wusu and Litz [2] and Erdemoglu and Canbazoglu [1] contributed

o the understanding of the chemistry of the black ash process.
ecently Obut et al. [15] and Erdemoglu et al. [16] investigated
irect conversion of celestite (SrSO4) to strontium carbonate by
echanochemical processing in sodium carbonate solution to pro-

uce strontium carbonate.
In the present study, models based on artificial neural networks

ANNs) are presented for computing the conversion kinetics of
elestite to SrCO3 in Na2CO3 solution. Ability and adaptability to
earn, generalizability, smaller information requirement, fast real-
ime operation, and ease of implementation features have made
NNs popular in the last few years [17–24]. Because of these fas-
inating features, ANNs are here used to model the relationship
etween leaching parameters and the obtained results.

. Experimental

.1. Materials

The celestite concentrate used in the study was obtained from
arit Maden T.A.Ş. Concentrator (Sivas, Turkey). The samples were
et sieved to obtain particle sizes in the ranges +212, −212+106,
106+75, −75+53 and −53 �m.

According to mineralogical and XRD analysis together with
hemical analysis, celestite was the major mineral in the sample
ith minor gypsum (CaSO4·2H2O) and trace barite (BaSO4), while

ther minerals varied from 1.02% to 2.31% [14]. Chemical analyses
f different size fractions of the sample are listed in Table 1.

.2. Experimental procedure
The leaching experiments were conducted in a 1-l Pyrex beaker
ith a rubber cover in a thermostatically controlled water bath

quipped with a thermometer. A Heidolph Mark RZR 2021 model
echanical stirrer with propeller was used for stirring. During
4

BaSO4 0.46 0.37 0.35 0.33 0.33
CaSO4·2H2O 2.83 2.64 1.49 1.33 1.33
Others 2.31 1.30 1.49 1.02 1.10

setup of the experiments, solid content of the solution was held
constant at 5:500 (w:v). Stirring speed varied from 200 to 600 rpm,
temperature varied from 40 to 80 ◦C, and Na2CO3:SrSO4 mole ratios
varied from 1:1 to 4:1. The ratio of solid content of solution var-
ied from 2.5:500 to 50:500. Particle size fractions used were +212,
−212+106, −106+75, −75+53 and −53 �m. Results of converting
celestite to strontium carbonate were calculated from dissolved
sulfate values because the sulfate in the leach solution originated
from the solubilized SrSO4 content of celestite. For SO4

2− analysis,
leach solutions in the range 1–4 ml were taken from the reactor at
various time intervals, and the sample solution was diluted with
distilled water to 100 ml in a volumetric flask. Distilled water in
the volume taken was immediately added to the leaching medium.
These solutions were analyzed for sulfate using the turbid met-
ric method with a Shimadzu UV-2450 UV–VIS spectrophotometer.
Sulfate analyses were conducted to determine the amount of SrSO4
passing to leach solution and thus to calculate stoichiometrically
the amount of SrCO3 in leach medium according to Eq. (1).

The ultrasonic treatment was conducted with Ultrasons-H
3000838 P-Selecta model (J. P. Selecta, Barcelona, Spain) ultrasonic
bath, which supplied a constant frequency of 40 kHz with temper-
ature control.

Spectroscopic studies were conducted with a Bruker Tensor 27
model FT-IR spectrophotometer. After the leaching treatments, the
reaction products were separated from the remaining solution,
washed with distilled water, dried, weighed, and analyzed for FT-
IR. According to FT-IR analysis, the solid phase is SrCO3 in the final
solid. The leaching experiments were also conducted in an ultra-
sonic bath.

3. Results and discussion

3.1. Dissolution of celestite

The general reaction of the direct conversion is given in Eq.
(1), which goes to the right because of the difference between
the solubility products of SrSO4 (Ksp = 2.8 × 10−7) and SrCO3
(Ksp = 9.4 × 10−10) [15]. According to the proposed reaction, diffu-
sion of sulfate ions is controlled by the strontium carbonate formed
on the celestite surface [3,4].

The experiments for replacement of SO4
2− ions of mineral

celestite with CO3
2− ions in Na2CO3 solutions were directed by con-

sidering the effect on the exchange of SO4
2− ions with CO3

2− ions by
the following factors: stirring speed, temperature, Na2CO3:SrSO4
mole ratio, solid to liquid ratio, and particle size of celestite.

3.2. Effect of stirring speed

The effect of stirring speed on the conversion of celestite to
strontium carbonate was investigated in the range of 200–600 rpm.
Here, 5 g celestite was leached in 500 ml of Na2CO3 solution (4 times

the stoichiometric amount) at 50 ◦C for −212+106 �m particle size
by agitating. As seen in Fig. 1, speeds greater than 400 rpm did not
affect the rate of conversion reaction.

Sufficient stirring was required to sustain particles in leaching
solution with increasing dynamic effects; therefore, the stirring
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ig. 1. Rate curves for the conversion of celestite to SrCO3 at different stirring speeds
Na2CO3:SrSO4 mole ratio: 4:1, solid to liquid ratio: 1:100 (w:v), weight of ore: 5 g,
article size: −212+106 �m, T: 50 ◦C).

ate was kept constant at 400 rpm to investigate the effect of other
arameters on the conversion.

.3. Effect of temperature

Experiments to determine the effect of temperature on the dis-
olution of celestite were conducted in the temperature range of
0–80 ◦C. Fig. 2 shows the variation in conversion of celestite to
trontium carbonate as a function of reaction time. As temperature
ncreased, the conversion rate of celestite increased, up to 70 ◦C.
fter that, the conversion rate decreased. The conversion rate of
elestite slowed down at 80 ◦C after 90 min.

Conversion under leaching conditions of celestite (SrSO4) to
rCO3 showed parabolic behaviour with respect to reaction times.
t the beginning of the reaction (t < 90 min.), the reaction rate

as faster because of a direct interaction between the surface of

elestite and the reaction media. After that, formation of a product
orous layer (SrCO3) reduced the reaction rate [25].

Na2CO3 is a polybasic acid (H2CO3) ionized to give CO3
2−, the

ain carbonating agent, and HCO3
− ions. According to the dissolu-
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ig. 2. Rate curves for the conversion of celestite to SrCO3 at different leaching tem-
eratures (Na2CO3:SrSO4 mole ratio: 4:1, solid to liquid ratio: 1:100 (w:v), weight
f ore: 5 g, particle size: −212+106 �m, 400 rpm).
Fig. 3. Rate curves for the conversion of celestite to SrCO3 with different amounts
of Na2CO3 (solid to liquid ratio: 1:100 (w:v), weight of ore: 5 g, particle size:
−212+106 �m, 400 rpm, T: 60 ◦C).

tion equilibria of CO2 in water given by Erdemoglu and Canbazoglu
[1], the solubility of carbon dioxide decreases as temperature
increases, enough to precipitate strontium ions in the form of SrCO3
up to 75 ◦C. Temperatures greater than 75 ◦C cause the gasifica-
tion of CO3

2− ions as CO2. Therefore, the conversion of celestite to
strontium carbonate decreased at temperatures greater than 70 ◦C.

3.4. Effect of the amount of sodium carbonate (Na2CO3:SrSO4
mole ratio)

The effect of the quantity of sodium carbonate on conversion
reaction was investigated for 1:1, 1:1.5, 1:2, 1:2.5, and 1:4 mole
ratios of strontium sulfate: sodium carbonate at 60 ◦C. As shown in
Fig. 3, the conversion of celestite to strontium carbonate was not
complete after 240 min when the required stoichiometric amount
of Na2CO3 was used. As the amount of Na2CO3 increased, the con-
version of celestite to strontium carbonate increased. More than
90% of conversion occurred in 1:2.5 and 1:4 mole ratios.

Conversion occurs, dynamically as a result of direct contact
between the surface of the celestite and the reaction media. Because
of a high concentration of CO3

2− ions, ion exchanges increase.
Furthermore, the conversion of celestite to SrCO3 increases with
increasing the CO3

2−:SO4
2− ratio in the reaction interface. The con-

version must be formed in excess of the stoichiometric amount
required. The conversion of celestite to strontium carbonate tried
with a stoichiometric of mole ratio of Na2CO3:SrSO4 did not cause
a significant change. Mole ratio is a decisive factor in the develop-
ment of the reaction.

3.5. Effect of solid to liquid ratio

Fig. 4 shows the effect of solid to liquid ratio on the conversion of
celestite in 500 ml solutions for 0.5:100, 1:100, 2:100, 4:100, 10:100
solid to liquid ratios (w:v). There was no variation in the conver-
sion of celestite to strontium carbonate with a change in solid to
liquid ratio up to a ratio of 2:100 as function of reaction time at
60 ◦C. It was observed that the change in this variable did not affect
the development of the reaction up to 2:100, because no change
was observed in the conversion grade due to an increase in the

amount of solid used during leaching treatments. Then the rate of
conversion decreased. This may be dependent on forming a porous
layer around the unleached particles. Above the 4:100 ratio, sul-
fate analyses of leaching solutions were not conducted because of
an interference effect of ions in leaching medium on sulfate analy-
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ig. 4. Rate curves for the conversion of celestite to SrCO3 at different solid to liquid
atios (Na2CO3:SrSO4 mole ratio: 4:1, particle size:−212+106 �m, 400 rpm, T: 60 ◦C).

es. Besides, as solid to liquid ratio increases, the separation of solid
nd liquid becomes more difficult.

.6. Effect of particle size

Leaching reactions depend largely on particle size. Effect of par-
icle size on the conversion of celestite to strontium carbonate
as investigated by using particle size ranges of +212, −212+106,
106+75, −75+53 and −53 �m. Strontium carbonate recovery

ncreased with decreasing particle size, as shown in Fig. 5.
It is clear that the conversion of celestite to SrCO3 is rapid at

he beginning. If the particle size decreases, the conversion is more
apid; however, the particle size effect decreases with increasing
eaching time.
.7. Effect of ultrasonic waves

Celestite was also converted to strontium carbonate by using an
ltrasonic bath without agitation as a function of reaction time.
ltrasonic waves may be helpful in obtaining a more effective
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ig. 5. Rate curves for the conversion of celestite to SrCO3 with different particle
ize ranges (Na2CO3:SrSO4 mole ratio: 4:1, solid to liquid ratio: 1:100 (w:v), weight
f ore: 5 g, 400 rpm, T: 60 ◦C).
Fig. 6. Effect of ultrasonic treatment in the conversion of celestite to SrCO3

(Na2CO3:SrSO4 mole ratio: 4:1, solid to liquid ratio: 1:100 (w:v), weight of ore:
5 g, particle size: −212+106 �m, T: 60 ◦C).

solute transfer by changing solid structures and solvent fluidity. The
high frequency (40 kHz) sound waves produce a cavitation effect
which leads to the formation of millions of low pressure micro-
scopic bubbles. Ultrasonic cavitations can effectively improve the
thermal reaction equilibration [26]. However, as shown in Fig. 6,
no significant change was observed in conversion rate of celestite
by ultrasonic waves; conversion rate did not increase. For compar-
ison, mechanical stirring is used after the celestite particles were
placed into the carbonate solution with a stirring speed of 400 rpm
differently than ultrasonic waves under the same conditions.

3.8. FT-IR studies

Conversion of the celestite surface to strontium carbonate was
investigated by spectroscopy. Structural changes in the treated
celestite could be observed in IR spectra. The spectroscopic results
(Fig. 7) show IR spectra for celestite, with strontium carbonate
formed by mechanical effect, and strontium carbonate formed by
ultrasonic effect in leach solution, respectively.

In Fig. 7(a), the bands at 991 and 1081 cm−1 are characteristic of
the sulfate group in celestite. The peaks at 698, 855 and 1770 cm−1

as well as the broad band at 1432 cm−1 seen in Fig. 7(b), define the
carbonate group in formed strontium carbonate [10,11,25]. These
stretching and bending modes were also reported in the celestite
treated with ultrasonic effect at 698, 858, 1439, and 1771 cm−1

(Fig. 7(c)). These results demonstrate that the surface of celestite
was transformed to strontium carbonate in the leaching conditions:
Na2CO3:SrSO4 mole ratio: 4:1, solid to liquid ratio: 1:100 (w:v),
weight of ore: 5 g, particle size: −212+106 �m, T: 60 ◦C, t: 240 min,
400 rpm for (b), ultrasonic effect for (c). However, a peak remaining
at 1070 cm−1, corresponding to the SO4

2− bending band, indicates
the presence of a very small number of SO4

2− ions, suggesting that
unconverted raw SrSO4 was still present in the reaction products
even after 240 min of reaction. After the leaching treatments, it was
observed that the SrCO3 converted solid was almost completely
different from the original mineral SrSO4.

3.9. Artificial neural networks
ANNs are artificial systems, designed to mimic the human brain
by extracting the relationships that underlie the data presented to
them. They produce results very quickly because of their property
of working in parallel to solve a specific problem. Thereby, they
are quite effective in real-time problem solving. In the most gen-
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ig. 7. FT-IR spectrums: (a) celestite (SrSO4), (b) strontium carbonate (SrCO3) form
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ral sense, ANN can be assumed to be as a complex interconnected
ystem of many neurons in the human brain or of simple process-
ng elements connected artificially and with different impact levels.
NN is created by a means of interconnections of network neurons
nd usually organized into layers. Various ANN architectures are
resent [17,18,27].

.9.1. Multilayered perceptrons
Multilayered perceptrons (MLPs) are the simplest and there-

ore most commonly used neural network architectures [17,18].
LP consists of three layers: an input layer, an output layer, and an

ntermediate or hidden layer.

j = f (˙wjixi) (2)

Neurons in the input layer act only as buffers for distributing
nput signals xi to neurons in the hidden layer. Each neuron j in the
idden layer sums up its input signals xi after weighting them with
trengths of the respective connections wji from the input layer
nd computes its output yj as a function f of the sum, viz., f can
e a simple threshold function, a sigmoid, or a hyperbolic tangent
unction. The output of neurons in the output layer is computed
imilarly.

Training a network consists of adjusting weights of the net-
ork using various the different learning algorithms such as back
ropagation, quick prop, genetic algorithm, delta-bar-delta (DBD),
xtended delta-bar-delta (EDBD), etc. A learning algorithm gives
he change �wji(k) in the weight of a connection between neurons
and j. In the following section, only one learning algorithm (EDBD)
as used in this paper and is briefly explained.

.9.2. Extended delta-bar-delta algorithm

The EDBD algorithm is an extension of the DBD and based on

ecreasing the training time for MLPs [24]. In this algorithm, the
hanges in weights are calculated as

w(k + 1) = ˛(k)ı(k) + �(k)�w(k) (3)
chanically (Na2CO3:SrSO4 mole ratio: 4:1, solid to liquid ratio: 1:100 (w:v), weight
SrCO3) formed ultrasonically in sodium carbonate solutions (Na2CO3:SrSO4 mole
, T: 60 ◦C).

and the weights are then found as

w(k + 1) = w(k) + �w(k + 1) (4)

In Eq. (3), ˛(k) and �(k) are the learning and momentum coeffi-
cients, respectively. The learning coefficient change is given as

�˛(k) =

⎧⎨
⎩

�˛ exp(−�˛

∣∣ı̄(k)
∣∣), if ı̄(k − 1) ı(k) > 0

−ϕ˛ ˛(k) , if ı̄(k − 1)ı(k) < 0
0, otherwise

(5)

where �˛ is the constant learning coefficient scale factor, exp is the
exponential function, ϕ˛ is the constant learning coefficient decre-
ment factor, and �˛ is the constant learning coefficient exponential
factor. The momentum coefficient change is also written as

��(k) =

⎧⎨
⎩

�� exp(−��

∣∣ı̄(k)
∣∣), if ı̄(k − 1) ı(k) > 0

−ϕ� �(k), if ı̄(k − 1)ı(k) < 0
0, otherwise

(6)

where �� is the constant momentum coefficient scale factor, ϕ�

is the constant momentum coefficient decrement factor, and �� is
the constant momentum coefficient exponential factor.

In order to take a step further to prevent wild jumps and
oscillations in the weight space, ceilings are placed on the indi-
vidual connection learning and momentum coefficients. For this,
˛(k) ≤ ˛max, �(k) ≤ �max must be for all connections, where ˛max is
the upper bound on the learning coefficient, and �max is the upper
bound on the momentum coefficient.

Finally, after each epoch presentation of training tuples, the
accumulated error is evaluated. If the error E(k) is less than the pre-
vious minimum error, the weights are saved as the current best. A

recovery tolerance parameter � controls this phase. Specifically, if
the current error exceeds the minimum previous error such that
E(k) > Emin� all connection weights revert to the stored best set
of weights in memory. Further, both coefficients are decreased to
begin the recovery.
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.9.3. Conversion prediction of SrSO4 to SrCO3 in sodium
arbonate solution with neural network model

In recent years, artificial intelligence applications were applied
n several areas. Especially, they have been found in the areas of

etallurgy and leaching applications [28–33]. ANNs were adapted
or prediction of the conversion of SrSO4 to SrCO3 in sodium car-
onate solution. A neural model used to predict of conversion of
rSO4 to SrCO3 ratio is shown in Fig. 8.

MLP is trained with the use of EDBD algorithm. For the neural
odel, the inputs are experimental conversion (%), stirring speed

rpm), mole ratio (Na2CO3:SrSO4), particle size (�m) and temper-
ture (◦C); output is the measured conversion of SrSO4 to SrCO3

atio. In the MLP structure, input layer has the linear transfer func-
ion and the hidden and output layers have the tangent hyperbolic
unction. In the EDBD, the Gaussian function was used.

Training an ANN to predict with the use of a learning algorithm
EDBD) involves presenting different sets in sequence (experimen-

able 2
omparison of experimental and calculated conversion ratio by using a neural model of l

Leaching time (min) Stirring speed (rpm) Mole ratio
(Na2CO3:SrSO4)

Particle siz

5 200 4 159
15 200 4 159
30 200 4 159
60 200 4 159
90 200 4 159

120 200 4 159
180 200 4 159
240 200 4 159

5 400 4 159
15 400 4 159
30 400 4 159
60 400 4 159
90 400 4 159

120 400 4 159
180 400 4 159
240 400 4 159

5 400 4 25
15 400 4 25
30 400 4 25
60 400 4 25
90 400 4 25

120 400 4 25
180 400 4 25
240 400 4 25

he test data are shown in bold characters, others are training data.
edicted conversion (%).

tal conversion (%), stirring speed (rpm), mole ratio (Na2CO3:SrSO4),
particle size (�m), and temperature (◦C)) and corresponding mea-
sured values of conversion SrSO4 to SrCO3 ratio.

Differences between the target output predicted conversion
ratio and the actual output of the ANN are evaluated by the EDBD.
Adaptation occurs after the presentation of each set (experimen-
tal conversion (%), stirring speed (rpm), mole ratio (Na2CO3:SrSO4),
particle size (�m) and temperature (◦C) predicted conversion) until
the calculation accuracy of the network is deemed satisfactory
according to some criterion (for example, when the error between
predicted and actual output for the entire training set falls below
a given threshold) or the maximum allowable number of epochs is

reached.

The training and test datasets used for predicting conversion
ratio were obtained from the experimental work and are given in
Table 2. The 80 data sets in Table 2 were used to train the network,
and 48 shown in boldface type were used for testing.

eaching of celestite in sodium carbonate solution.

e (�m) Temperature (◦C) Experimental
conversion ratio (%)

Predicted
conversion ratio (%)

50 11.38 11.36
50 21.08 20.98
50 32.84 34.15
50 55.77 51.72
50 59.69 62.28
50 65.62 69.21
50 75.85 77.6
50 83.92 82.38

70 14.94 14.94
70 33.99 34.07
70 53.83 53.72
70 68.45 71.31
70 83.11 79.52
70 93.62 84.84
70 99.94 92.26
70 99.94 97.77

60 61.21 62.24
60 83.41 81.98
60 87.13 88.22
60 92.53 91.64
60 93.27 92.91
60 95.1 93.6
60 94.2 94.34
60 97.36 94.75
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Fig. 9. Experimental conversion ratio results vs. obtained conversion ratio.

After several trials, it was found that networks of two hidden
ayers achieved the task with great accuracy. The iteration number

as 25 million and numbers of neurons in the hidden layers were
and 8.

A set of random values distributed uniformly between −0.1 and
0.1 was used to initialize the weights of the networks, whereas
uples were scaled between −1.0 and +1.0 for inputs and −0.8 and
0.8 for outputs before training. Random and sequential training
trategies were followed. The parameters of the network are:

DBD, �˛ = 0.095, �� = 0.01, �� = 0.0, �˛ = 0.0,

�� = 0.01, �˛ = 0.1, 	 = 0.7, � = 50;

The experimental conversion ratio results vs. conversion ratio
btained by using the neural model for leaching of celestite in
odium carbonate solution was drawn (Fig. 9), and the correla-
ion coefficient (R2) was calculated as 0.9915. As seen in Fig. 9,
he performance of the neural model is in good agreement with
xperimental results.

Used for training, “predicted conversion ratio (%)” (training out-
ut) approach to the arithmetic average error 0.8581, 0.9114 error
ate was calculated as the standard deviation. Used for testing,
predicted conversion ratio (%)” (testing out) approach to error
rithmetic average of 3.2209, the error rate of the standard devia-
ion was found to be 2.5827.

. Conclusions

In the present study, the conversion of celestite in Na2CO3 solu-
ions under leaching conditions was investigated over a broad
ange of experimental conditions. The effects of variables of tem-
erature, solid to liquid ratio, particle size, stirring rate, and molar
atio Na2CO3:SrSO4 were studied. It was found that the conversion
ate of celestite to strontium carbonate increased systematically
ith increasing temperature (up to 70 ◦C). In addition, FT-IR results

howed that the replacement of SO4
2− ions in celestite by CO3

2−

ons under leaching conditions was nearly completed at 60 ◦C.
ased on experimental observations, a mechanism for the conver-
ion of celestite (fraction of Sr leached or converted to carbonate)
nder leaching conditions is proposed.

The obtained predicted results of the neural model were in

ery good agreement with the experimental results (R2 = 0.9915).
n addition, the test output data to the estimated standard devia-
ion for 48 data was found to be 2.5827. This value means that the
NN model is quite well-educated and estimated.

[

[
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The good agreement between the experimental values and
computed conversion ratio values supports the validity of the neu-
ral model. A distinct advantage of neural computation is that,
after proper training, a neural network completely bypasses the
repeated use of complex iterative processes for new cases pre-
sented to it. For engineering applications, the simple models are
very usable. Thus the neural model given in this work can also be
used for many engineering applications and purposes.
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